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Curvature of cell membranes
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The “raft” hypothesis



Lipid phase behavior

Gel phase Fluid phase Liquid ordered phase
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Confocal fluorescence microscopy

focal plane

Giant vesicle
Confocal section



Two photons can interact 
simultaneously with a molecule 

adding their energies to produce 
an excitation equal to the sum of 

their individual energies.

i.e. 2 red photons = 1 blue 
photon 

Two photon excited fluorescence microscopy

Single photon 
excitation   
(488 nm)

Two photon 
excitation 
(900 nm)
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gel and Ld domains with excess perimeter

Lo and Ld domains with minimum perimeter

Gel / fluid phase coexistence Fluid / fluid phase coexistence

Domain shape: line tension

L0 phaseLd phase



Does line tension couple to curvature?

Top view of a vesicle (wide field fluorescence)

Label lights up only Ld phase

Out of plane domain curvature 

Reduction of Boundary Energy Increase of Curvature Energy



GUVs with one domain and excess area

• global shape: truncated spheres (constant   
curvature within a domain)

• high, but finite meridional curvature in the   
saddle shaped neck region (no kink!)

• phase boundary not at minimum neck     
radius more curvature in the Ld phase

global shape not changed by varying   
fraction of coexisting phases

⇒ neither different bending moduli nor   
spontaneous curvatures determine    
shape significantly

⇒ global shape results from line      
tension and constraints on domain areas    
and internal volume



Curvature in a surface

measured along lines in the surface
mean curvature: h = ½(C1 + C2)

Gauss curvature: k = C1 * C2

Saddle shapes with zero mean curvature: 
Gaussian curvature
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Parameterizations of experimental vesicles

a) z, r

b) S, ψ



Axially symmetric surfaces are convenient
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Curvature along the meridian: 
C1 = dψ / dS

C2 = 1/r * sinψ

Geodesic curvature:
kg = 1/r * cosψ

Curvature along the parallels:  
1/r

kg
1/r
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Bending energies

Bending energies arise from: a) resistance towards mean curvature

b) resistance towards Gauss bending

Total bending energy is a sum of bending energy of every point in the 
surface.



membrane curvature elasticity theory 

Bending moment: M

Lateral tension: T Normal pressure difference: p

Line tension around domains: σ

A) mean 
curvature
B) Gauss 
curvature

Transverse shear: Q



Phase separated membranes with equal bending elasticities

Freely adjustable volume: p = 0

Increasing line tension
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Phase separated membranes with equal bending elasticities

Fixed volume

Increasing line tension
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Phase separated membranes with equal bending elasticities

Fixed volume

Increasing line tension
DRBIO Cornell University



Phase separated membranes with differing κg

decreasing κg of blue phase

Experimental
vesicle

Differing κg: - deformes primarily the neck region: a “boundary effect”

- relatively small influence on bulk geometry

Experimental 
phase jump
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Phase separated membranes with differing κ

decreasing κ of grey phase

ψ

Differing κ: - droplet shape versus spherical shape: a “bulk effect”

- relatively small influence on the neck geometry

Experimental 
phase jump
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Best fit results

Ld phase

L0 phase
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high temperatures: less line tension; starfish and pearls 

Cooling of homogenous “Starfish” vesicles and “Strings of Pearls” into the coexistence region:

Ld phase domains prefer 
regions with high 

curvature

merged red channel blue channel

merged red channel blue channel



stripe- and hexagonally modulated phases

“Every day, nature surprises us with 
structures and patterns of such beauty as to 
fill the scientist with wonder and the artist 

with envy” Silveira et al. 
Science (2003) 287, 
1468
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